Member-only story
Implementing End to end Change Data Capture (CDC) with PySpark: A Comprehensive Guide
13 min read 1 day ago
Part 1: Foundation and Setup
Introduction
Change Data Capture (CDC) is a critical data engineering pattern that identifies and tracks changes in data sources. This comprehensive guide will walk you through implementing a robust CDC solution using PySpark, with detailed explanations of each component.
1. Environment Setup and Basic Structure
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.sql.types import *
from datetime import datetime
# Initialize Spark Session
spark = SparkSession.builder \
.appName("CDC Implementation") \
.config("spark.sql.warehouse.dir", "spark-warehouse") \
.config("spark.executor.memory", "2g") \
.config("spark.driver.memory", "1g") \
.getOrCreate()
Detailed Explanation:
- The imports provide essential PySpark functionality:
-SparkSession
: Main entry point for PySpark functionality
-sql.functions
: Contains commonly used SQL functions
-sql.types
: Provides data type definitions - SparkSession configuration:
-appName
: Identifies your application in the Spark UI
-warehouse.dir
: Specifies the location for Spark SQL…