Member-only story

Implementing End to end Change Data Capture (CDC) with PySpark: A Comprehensive Guide

Mayurkumar Surani
13 min read1 day ago

Part 1: Foundation and Setup

Introduction

Change Data Capture (CDC) is a critical data engineering pattern that identifies and tracks changes in data sources. This comprehensive guide will walk you through implementing a robust CDC solution using PySpark, with detailed explanations of each component.

1. Environment Setup and Basic Structure

from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.sql.types import *
from datetime import datetime

# Initialize Spark Session
spark = SparkSession.builder \
.appName("CDC Implementation") \
.config("spark.sql.warehouse.dir", "spark-warehouse") \
.config("spark.executor.memory", "2g") \
.config("spark.driver.memory", "1g") \
.getOrCreate()

Detailed Explanation:

  • The imports provide essential PySpark functionality:
    - SparkSession: Main entry point for PySpark functionality
    - sql.functions: Contains commonly used SQL functions
    - sql.types: Provides data type definitions
  • SparkSession configuration:
    - appName: Identifies your application in the Spark UI
    - warehouse.dir: Specifies the location for Spark SQL…

--

--

Mayurkumar Surani
Mayurkumar Surani

Written by Mayurkumar Surani

AWS Data Engineer | Data Scientist | Machine Learner | Digital Citizen

No responses yet